Attentional control
In cognitive neuroscience, attentional control refers to individuals' capacity to choose what they pay attention to and what they ignore.[1] It is also known as endogenous attention or executive attention. In lay terms, attentional control can be described as an individual's ability to concentrate. Primarily mediated by the frontal areas of the brain including the anterior cingulate cortex, attentional control is thought to be closely related to other executive functions such as working memory.[2][3]
Development
Infancy
Early researchers studying the development of the frontal cortex thought that it was functionally silent during the first year of life.[4] Similarly, early research suggested that infants aged one year or younger are completely passive in the allocation of their attention, and have no capacity to choose what they pay attention to and what they ignore.[5] This is shown, for example, in the phenomenon of 'sticky fixation', whereby infants are incapable of disengaging their attention from a particularly salient target.[6] Other research has suggested, however, that even very young infants do have some capacity to exercise control over their allocation of attention, albeit in a much more limited sense.[7][8]
Childhood
As the frontal lobes mature,[9] childrens' capacity to exercise attentional control increases,[1] although attentional control abilities remain much poorer in children than they do in adults.[10] Some children show impaired development of attentional control abilities, thought to arise from the relatively slower development of frontal areas of the brain,[11] which sometimes results in a diagnosis of Attention Deficit Hyperactivity Disorder (ADHD).
Abnormal development
Disrupted attentional control have been noted not just in the early development of conditions for which the core deficit is related to attention such as ADHD[12], but also in conditions such as autism[13] and anxiety.[14] Disrupted attentional control has also been reported in infants born preterm[15], as well as in infants with genetic disorders such as Down syndrome and Williams syndrome.[16] Several groups have also reported impaired attentional control early in development in children from lower socioeconomic status families.[17]
The patterns of disrupted attentional control relate to findings of disrupted performance on executive functions tasks such as working memory across a wide number of different disorder groups.[1] The question of why the executive functions appear to be disrupted across so many different disorder groups remains, however, poorly understood.
Long-term significance
Importance for learning
Modular approaches view cognitive development as a mosaic-like process, according to which cognitive faculties develop separately according to genetically predetermined maturational timetables. Prominent authors who take a modular approach to cognitive development include Jerry Fodor, Elizabeth Spelke and Steven Pinker. In contrast, other authors such as Annette Karmiloff-Smith, Mark Johnson and Linda Smith have instead advocated taking a more interactive or dynamical systems approaches to cognitive development. According to these approaches, which are known as neuroconstructivist approaches, cognitive systems interact over developmental time as certain cognitive faculties are required for the subsequent acquisition of other faculties in other areas.
Amongst authors who take neuroconstructivist approaches to development, particular importance has been attached to attentional control, since it is thought to be a domain-general process that may influence the subsequent acquisition of other skills in other areas.[18] The ability to regulate and direct attention releases the child from the constraints of only responding to environmental events, and means they are able actively to guide their attention towards the information-rich areas key for learning. For example, a number of authors have looked at the relationship between an infants' capacity to exercise attentional control and their subsequent performance during language acquisition.[19][20]
See also
References
- ^ a b c Astle, D. E. & Scerif, G. (2009) Using Developmental Cognitive Neuroscience to Study Behavioral and Attentional Control. Developmental Psychobiology 51(2): 107-118.
- ^ Posner, M. I. & Petersen, S. E. (1990) The attention system of the human brain. Annual Review of Neuroscience 13: 25-42
- ^ Astle, D. E. & Scerif, G. Interactions between attention and visual short-term memory (VSTM): What can be learnt from individual and developmental differences? Neuropsychologia 49(6): 1435-1445.
- ^ Bell, M. A., & Wolfe, C. D. (2007). Changes in brain functioning from infancy to early childhood: Evidence from EEG power and coherence during working memory tasks. Developmental Neuropsychology, 31(1), 21-38.
- ^ Colombo, J. (2001). The development of visual attention in infancy, Annual Review of Psychology (Vol. 52, pp. 337-367)
- ^ Hood, B. M. & Atkinson, J. (1993) DISENGAGING VISUAL-ATTENTION IN THE INFANT AND ADULT. Infant Behavior & Development 16(4): 405-422.
- ^ Johnson, M. H. (1995) THE INHIBITION OF AUTOMATIC SACCADES IN EARLY INFANCY. Developmental Psychobiology 28(5): 281-291.
- ^ Colombo, J. & Cheatham, C. L. (2006) The emergence and basis of endogenous attention in infancy and early childhood. Advances in Child Development and Behavior, Vol 34 34: 283-322.
- ^ Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent Iii, T. F., Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L. & Thompson, P. M. (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America 101(21): 8174-8179.
- ^ Davidson, M. C., Amso, D., Cruess Anderson, L. & Diamond, A. (2006) Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 44(11): 2037-2078.
- ^ Shaw, P. Lerch, J., Greenstein, D., Sharp, W., Clasen,L., Evans,A., Giedd,J., Xavier Castellanos, F., Rapoport, J. Longitudinal Mapping of Cortical Thickness and Clinical Outcome in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder. Archives of General Psychiatry. 2006;63:540-549.
- ^ Sonuga-Barke, E. J. S., Koerting, J., Smith, E., McCann, D. C. & Thompson, M. Early detection and intervention for attention-deficit/hyperactivity disorder. Expert Review of Neurotherapeutics 11(4): 557-563.
- ^ Elsabbagh, M., Volein, A., Holmboe, K., Tucker, L., Csibra, G., Baron-Cohen, S., Bolton, P., Charman, T., Baird, G. & Johnson, M. H. (2009) Visual orienting in the early broader autism phenotype: disengagement and facilitation. Journal of Child Psychology and Psychiatry 50(5): 637-642.
- ^ Rothbart, M. K., Ellis, L. K., Rueda, M. R. & Posner, M. I. (2003) Developing mechanisms of temperamental effortful control. Journal of Personality 71(6): 1113-1143.
- ^ van de Weijer-Bergsma, E., Wijnroks, L. & Jongmans, M. J. (2008) Attention development in infants and preschool children born preterm: A review. Infant Behavior and Development 31(3): 333-351.
- ^ Cornish, K., Scerif, G. & Karmiloff-Smith, A. (2007) Tracing syndrome-specific trajectories of attention across the lifespan. Cortex 43(6): 672-685.
- ^ Welsh, J. A., Nix, R. L., Blair, C., Bierman, K. L. & Nelson, K. E. The Development of Cognitive Skills and Gains in Academic School Readiness for Children From Low-Income Families. Journal of Educational Psychology 102(1): 43-53.
- ^ Scerif, G. Attention trajectories, mechanisms and outcomes: at the interface between developing cognition and environment. Developmental Science 13(6): 805-812.
- ^ Kannass, K. N. & Oakes, L. M. (2008) The development of attention and its relations to language in infancy and toddlerhood. Journal of Cognition and Development 9(2): 222-246.
- ^ Rose, S. A., Feldman, J. F. & Jankowski, J. J. (2009) A Cognitive Approach to the Development of Early Language. Child Development 80(1): 134-150.